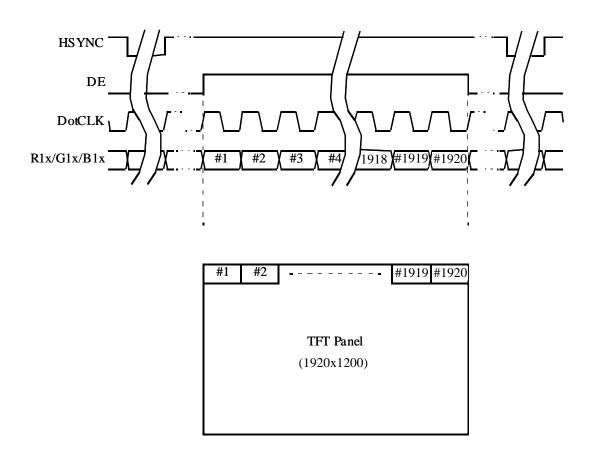


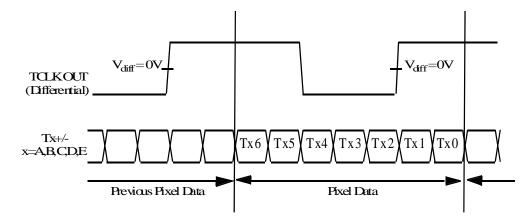
Application Note THAN0123_Rev.1.10_E

THC63LVDM87 Application Note System Diagram and PCB Design Guide Line


Date	Revision	
20120406	THAN0123_Rev.1.00_E	
20120620	THAN0123_Rev.1.10_E	

Contents	
1. CMOS/TTL Data Timing Diagram	P.3
2. LVDS Data Timing Diagram	P.4
3. Example of System Diagram	
1) 8bit CMOS/TTL Input / IO VCC = 1.8V	P.6
2) 6bit CMOS/TTL Input / IO VCC = 3.3V	P.7
4. NOTE	P.8
5. Trace Example for BGA	P.9
6. PCB Design Guide Line for LVDS	P.10

1. CMOS/TTL Data Timing Diagram



Note:

	Red	Green	Blue
MSB	R7	G7	В7
	R6	G6	B6
	R5	G5	B5
	R4	G4	B4
	R3	G3	В3
6Bit LSB	R2	G2	B2
	R1	G1	B1
8Bit LSB	R0	G0	В0

2. LVDS Data Timing Diagram

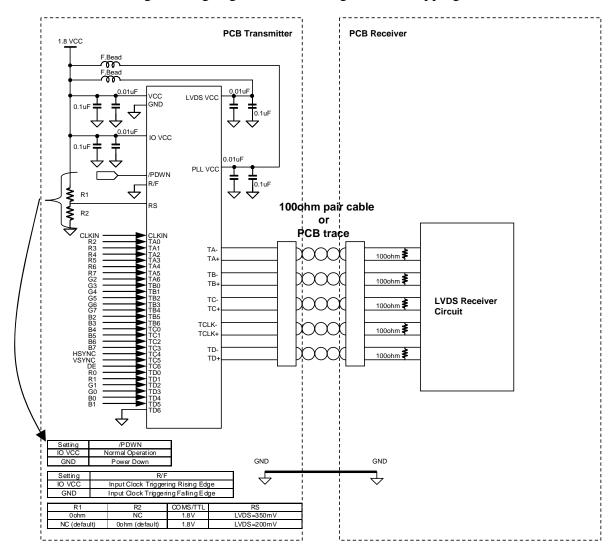
THC63LVDM87 Pixel Data Assign _ JEITA (6bit, 8Bit Application)

	6Bit	8Bit
TA0	R2	R2
TA1	R3	R3
TA2	R4	R4
TA3	R5	R5
TA4	R6	R6
TA5	R7	R7
TA6	G2	G2
TB0	G3	G3
TB1	G4	G4
TB2	G5	G5
TB3	G6	G6
TB4	G7	G7
TB5	B2	B2
TB6	В3	В3
TC0	B4	B4
TC1	B5	B5
TC2	В6	B6
TC3	В7	В7
TC4	Hsync	Hsync
TC5	Vsync	Vsync
TC6	DE	DE
TD0	-	R0
TD1	-	R1
TD2	-	G0
TD3	-	G1
TD4	-	В0
TD5	-	B1
TD6	-	N/A

Note: For 6Bit application use A to C channel and open TD+/- pin.

THC63LVDM87 Pixel Data Assign _VESA (6bit, 8Bit Application)

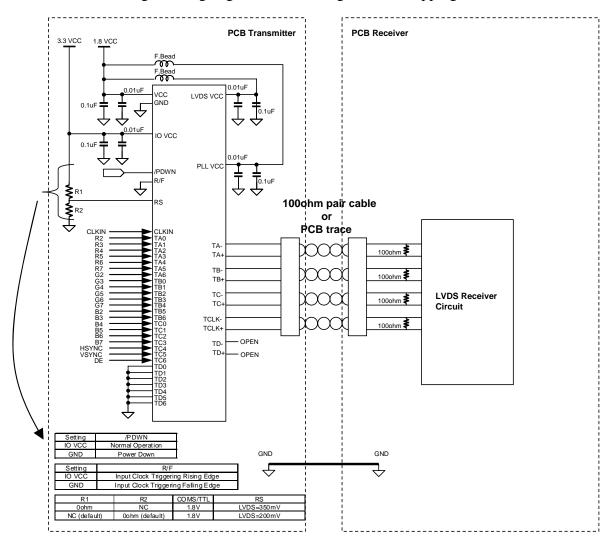
	6Bit	8Bit
TA0	R0	R0
TA1	R1	R1
TA2	R2	R2
TA3	R3	R3
TA4	R4	R4
TA5	R5	R5
TA6	G0	G0
TB0	G1	G1
TB1	G2	G2
TB2	G3	G3
TB3	G4	G4
TB4	G5	G5
TB5	В0	В0
TB6	B1	B1
TC0	B2	B2
TC1	В3	В3
TC2	B4	B4
TC3	B5	B5
TC4	Hsync	Hsync
TC5	Vsync	Vsync
TC6	DE	DE
TD0	-	R6
TD1	-	R7
TD2	-	G6
TD3	-	G7
TD4	-	В6
TD5	-	В7
TD6	-	N/A


Note : For 6Bit application use A to C channel and open TD+/- pin.

3. Example of System Diagram

1) 8 bit 1.8V CMOS/TTL Input

THC63LVDM87 Setting: Falling edge / Normal swing / JEITA mapping


Note:

- Regarding the /PDWN, please use switching if needed.
- Regarding the R/F and RS pin, please select VCC level or GND level it depends on user operation.
- Please prepare the 100ohm pair cable or PCB pattern trace that is controlled with 100ohm for LVDS signal.
- Connect each Board GND
- COMS/TTL input pin that not in use, it must be tied to GND.

2) 6 bit 3.3V CMOS/TTL Input

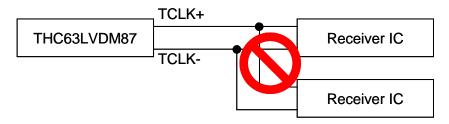
THC63LVDM87 Setting: Falling edge / Normal swing / JEITA mapping

Note:

- Regarding the /PDWN, please use switching if needed.
- Regarding the R/F and RS pin, please select VCC level or GND level it depends on user operation.
- Please prepare the 100ohm pair cable or PCB pattern trace that is controlled with 100ohm for LVDS signal.
- Connect each Board GND
- COMS/TTL input pin that not in use, it must be tied to GND.

4. Note

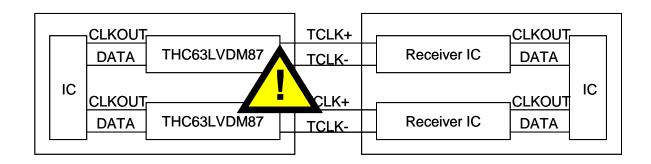
4.1) Cable Connection and Disconnection

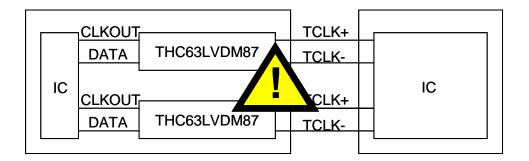

Do not connect and disconnect the LVDS cable, when the power is supplied to the system.

4.2) GND Connection

Connect the each GND of the Board which THC63LVDM87 and Receiver on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.

4.3) Multi Drop Connection

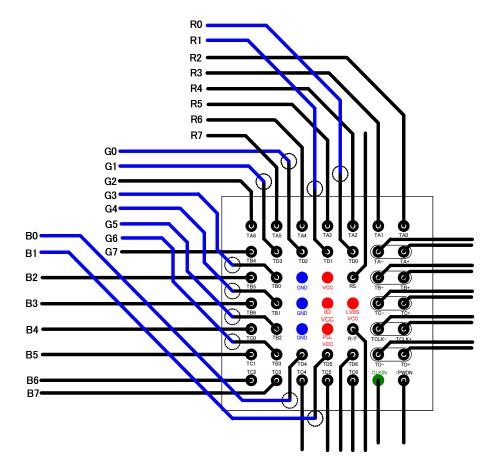

Multi drop connection is not recommended.



4.4) Asynchronous use

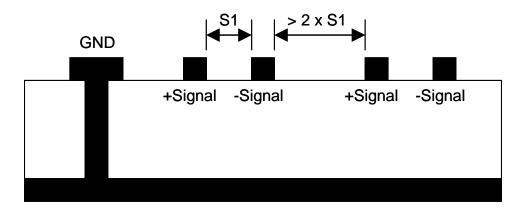
Asynchronous uses such as following systems are not recommended. If it's not avoidable, please contact to

mspsupport@thine.co.jp (for FAE mailing list)



5. Trace Example for BGA

TOP VIEW TA6 TA5 TA4 TA3 TA2 TA1 TA0 TB4 TD3 TD2 TD1 TD0 TA-TA+ TB5 TB0 RS ТВ-TB+ LVDS VCC TC-D TB6 TB1 TC+ TC0 TB2 R/F TCLK-TCLK+ TC1 TB3 TD4 TD5 TD6 TD-TD+ TC2 TC3 TC4 TC5 TC6 CLKIN /PWDN


6. PCB Design Guide Line

General Guideline

- Use 4 layers PCB (minimum).
- Locate by-pass capacitors adjacent close to the device pins to a maximum extent.
- Make the loop minimum which is consist of Power line and GND line.
- Use large GND plane.
- Separate VDD power supply for each block via ferrite bead.

LVDS Trace

- Interconnecting media between Transmitter and Receiver (i.e. PCB trace, connector and cable) should be well balanced. (Keep all these differential impedance and the length of media as same as possible)
- Minimize the distance between traces of a pair (S1) to maximize common mode rejection. See following figure.
- Place adjacent LVDS trace pair at least twice (>2 x S1) as far away as possible.
- Avoid 90 degree bends and sharp angles.
- Minimize the number of VIA on LVDS traces.
- Match impedance of PCB trace, connector, cable and termination to minimize reflections (emissions) for cabled applications (typically 100ohm differential mode characteristic impedance).
- Place terminal resistor close to the Receiver pins to a maximum extent.
- To place common mode choke coil is desired for EMI reduction.

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc.

sales@thine.co.jp